Understanding the Pattern and Drivers of Plant Communities across the Arctic Tundra Landscape

Venkata Shashank Konduri^{1,2}, Jitendra Kumar², Forrest M. Hoffman², Verity G. Salmon², Colleen M. Iversen², Amy L. Breen³ and William W. Hargrove⁴

¹Northeastern University, ²Oak Ridge National Laboratory, ³University of Alaska, Fairbanks and ⁴USDA Forest Service

Dec 09, 2019

Greening Trend in Arctic

Since the late 20th century, tundra regions have been greening in response to changing climate and an accelerated disturbance regime [1; 2].

Credits: NASA's Goddard Space Flight Center/Cindy Starr

Implications for Arctic Biogeochemistry

Transitioning plant communities have important implications for C and N cycling within tundra ecosystems that have historically been nutrient-limited [3; 4]

Image provided by Lawrence Berkeley National Laboratory Edited by: Verity G. Salmon

Objectives

• Create high-resolution, watershed-scale plant community maps - where?

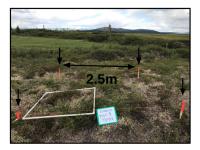
- Create high-resolution, watershed-scale plant community maps where?
- Understand the drivers (climatological, topographic and hydrologic) of plant community distribution
 why?

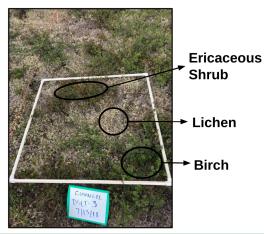
- Create high-resolution, watershed-scale plant community maps where?
- Understand the drivers (climatological, topographic and hydrologic) of plant community distribution
 – why?
- With the help of Remote Sensing and Machine Learning
 – how?

Watershed-scale plant community mapping

Intensively Studied Watersheds at Seward, AK

Teller


Council



Field vegetation surveys conducted across all watersheds

Plant Community: A collection of plant species within a geographical area, which form a relatively uniform patch

Birch-Ericaceous-Lichen

Field Vegetation Survey (contd.)

12 Plant Communities

Willow-Birch

Dryas-Lichen Dwarf Shrub Tundra

Sedge-Willow Dryas Tundra

Willow Shrub

Mesic Graminoid-Herb Meadow

Wet Meadow Tundra

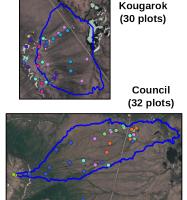
Mixed Shrub-Sedge Tussock Tundra

Ericaceous-Lichen Dwarf Shrub Tundra

Wet Sedge Bog-Meadow

Birch-Ericaceous-Lichen Shrub Tundra

Tussock-Lichen tundra

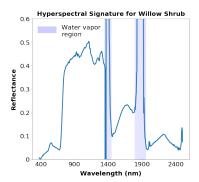

Alder-Willow Shrub

Field Vegetation Survey (contd.)

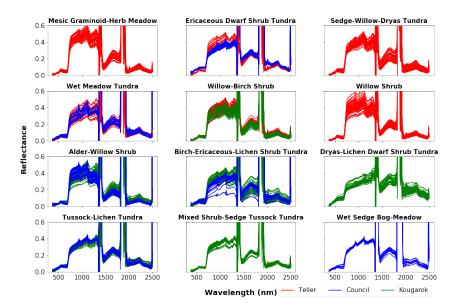
Teller (36 plots)

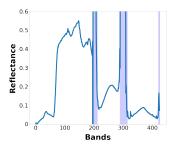
Total number of surveys = 98

Airborne Remote Sensing from NASA ABOVE AVIRIS-NG

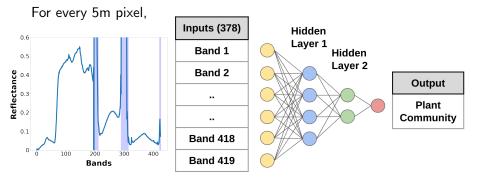

	1					
Parameter	Value					
Wavelength	380 - 2510 nm					
No. of Bands	425					
Spatial Res	5 m					

2018 Flight Lines

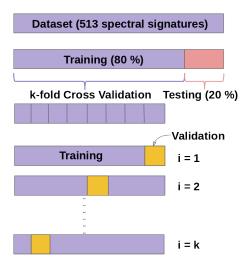

Sensor Specifications



Spectral signatures of vegetation communities across sites

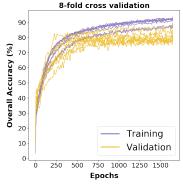


Deep Neural Network-based classifier


For every 5m pixel,


Deep Neural Network-based classifier

Classification Results



Classification Results

Hyperparameters:

- Number of Hidden Layers: 3
- Number of Units: 200, 100, 50
- Regularization: Dropout (0.1) and L1

Accuracy on the test set: 80.58%

Errors in Prediction

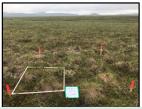
- Values along the diagonal represent the number of instances when the model predicted correctly.
- Off-diagonal values show errors.

		PREDICTED												
		Ald-Wil	Bir Eric	Dry Lic	Eric Dwrf	Mes Gram	Mix Shrb	Sed-Wil	Tuss Lich	Wet Mead	Wet Sed	Wil Shrb	Wil Bir	Recall (%)
	Ald-Wil	12	2	-	-	-	-	-	-	-	-	-	1	80
	Bir Eric	-	6	-	1	-	-	-	1	1	-	-	-	67
	Dry Lic	-	-	5	-	-	-	-	-	-	-	-	-	100
	Eric Dwrf	-	-	-	5	-	-	-	-	-	-	-	2	71
B	Mes Gram	-	-	-	-	5	-	-	-	-	-	2	-	71
OBSERVE	Mix Shrb	-	-	-	-	-	6	-	-	-	-	-	-	100
	Sed-Wil	-	-	-	-	-	-	6	-	2	-	1	-	67
	Tuss Lich	-	-	-	-	-	-	-	9	-		-	-	100
	Wet Mead	-	1	-	-	-	-	-	-	5	-	-	-	83
	Wet Sed	-	-	-	-	-	-	-	-	-	3	-	-	100
	Wil Shrb	-	-	-	-	1	-	1	-	-	-	8	-	80
	Wil Bir	2	-	-	-	-	-	-	-	-	-	2	13	76
	Precision (%)	86	67	100	83	83	100	86	90	62	100	62	81	80.58

Birch-Ericaceous-Lichen Shrub Tundra

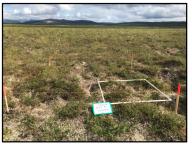
Confused with other plant communities

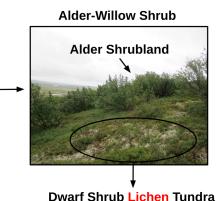
		PREDICTED												
		Ald-Wil	Bir Eric	Dry Lic	Eric Dwrf	Mes Gram	Mix Shrb	Sed-Wil	Tuss Lich	Wet Mead	Wet Sed	Wil Shrb	Wil Bir	Recall (%)
	Ald-Wil	12	2	-	-	-	-	-	-	-	-	-	1	80
	Bir Eric	-	6	-	1	-	-	-	1	1	-	-	-	67
	Dry Lic	-	-	5	-	-	-	-	-	-	-	-	-	100
	Eric Dwrf	-	-	-	5	-	-	-	-	-	-	-	2	71
G	Mes Gram	-	-	-	-	5	-	-	-	-	-	2	-	71
	Mix Shrb	-	-	-	-	-	6	-	-	-	-	-	-	100
ERV	Sed-Wil	-	-	-	-	-	-	6	-	2	-	1	-	67
BSE	Tuss Lich	-	-	-	-	-	-	-	9	-	-	-		100
ō	Wet Mead	-	1	-	-	-	-	-	-	5	-	-	-	83
	Wet Sed	-	-	-	-	-	-	-	-	-	3	-	-	100
	Wil Shrb	-	-	-	-	1	-	1	-	-	-	8	-	80
	Wil Bir	2	-	-	-	-	-	-	-	-	-	2	13	76
	Precision (%)	86	67	100	83	83	100	86	90	62	100	62	81	80.58


Reasons behind confusion

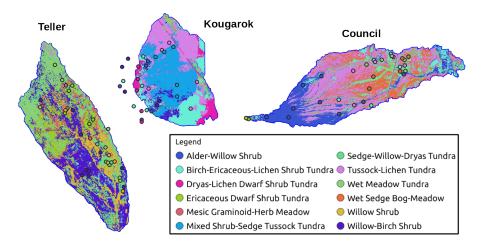
Overlap of constituent species with other plant communities

Ericaceous Dwarf Shrub Tundra


Tussock-Lichen Tundra



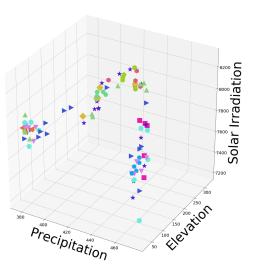
Reasons behind confusion


"Patchiness" of vegetation

Birch-Ericaceous-Lichen Shrub Tundra

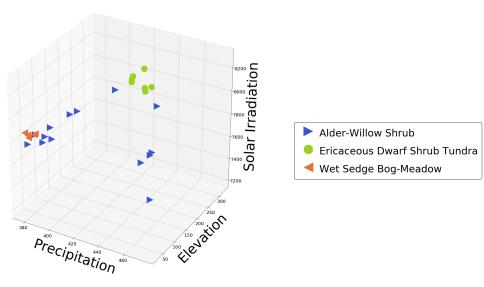
5m Plant Community Maps for Watersheds

Understand the drivers of vegetation distribution


Environmental Variables

Туре	Name	Units	Resolution	Source
	Slope	degrees		
	Aspect	degrees		
	Elevation	meters		
Topography	Avg. Summer Solar Irradiation*	5m	IfSAR	
	Avg. Winter Solar Irradiation*			
	Topographic Convergence Index	-		
	Distance to stream			
	Avg. Summer Temperature*	°C		$SNAP^\dagger$
Climate	Avg. Winter Temperature*	°C		
(Decadal avg.	Precipitation	mm	771m	
2000-09)	Growing Season Length	days		
	Snowfall Equivalent	mm		

* Summer - June, July, August Winter - December, January, February


[†] SNAP (Scenarios Planning for Alaska Arctic planning) produces downscaled, historical climate data for sub-Arctic and Arctic regions of Alaska and Canada. Downscaled data come from one of 5 top-ranked GCMs or are calculated as a 5-model average.

Multidimensional Environmental Space

Specialists v/s Generalists

Summary

- Airborne hyperspectral remote sensing data allows mapping of plant communities at watershed scale.
- A Deep Neural Network-based classification of vegetation spectra achieved an accuracy >80%.
- Common reasons behind predictions errors:
 - Overlap of constituent species across vegetation communities
 - High heterogeneity of landscape ("patchiness")
- Analysis of environmental drivers provides insights into preferential niche space where plant communities thrive.

References

- J. Ju and J. G. Masek, "The vegetation greenness trend in canada and us alaska from 1984–2012 landsat data," *Remote Sensing of Environment*, vol. 176, pp. 1–16, 2016.
- [2] G. J. Jia, H. E. Epstein, and D. A. Walker, "Greening of arctic alaska, 1981–2001," *Geophysical Research Letters*, vol. 30, no. 20, 2003.
- [3] S. E. Hobbie, "Effects of plant species on nutrient cycling," Trends in ecology & evolution, vol. 7, no. 10, pp. 336–339, 1992.
- [4] F. S. Chapin III and G. R. Shaver, "Individualistic growth response of tundra plant species to environmental manipulations in the field," *Ecology*, vol. 66, no. 2, pp. 564–576, 1985.